The Ultimate Categorical Independence Ratio of Complete Multipartite Graphs

نویسنده

  • Ágnes Tóth
چکیده

The independence ratio i(G) of a graph G is the ratio of its independence number and the number of vertices. The ultimate categorical independence ratio of a graph G is defined as limk→∞ i(G×k), where G×k denotes the kth categorical power of G. This parameter was introduced by Brown, Nowakowski and Rall, who asked about its value for complete multipartite graphs. In this paper we determine the ultimate categorical independence ratio of complete multipartite graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results on Independent Sets in Categorical Products of Graphs, the Ultimate Categorical Independence Ratio and the Ultimate Categorical Independent Domination Ratio

We show that there are polynomial-time algorithms to compute maximum independent sets in the categorical products of two cographs and two splitgraphs. The ultimate categorical independence ratio of a graph G is defined as limk→∞ α(G )/n. The ultimate categorical independence ratio is polynomial for cographs, permutation graphs, interval graphs, graphs of bounded treewidth and splitgraphs. When ...

متن کامل

Constructions of antimagic labelings for some families of regular graphs

In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.

متن کامل

Weighted matrix eigenvalue bounds on the independence number of a graph

Weighted generalizations of Hoffman’s ratio bound on the independence number of a regular graph are surveyed. Several known bounds are reviewed as special cases of modest extensions. Comparisons are made with the Shannon capacity Θ, Lovász’ parameter θ, Schrijver’s parameter θ, and the ultimate independence ratio for categorical products. The survey concludes with some observations on graphs th...

متن کامل

Ela Weighted Matrix Eigenvalue Bounds on the Independence Number of a Graph

Weighted generalizations of Hoffman’s ratio bound on the independence number of a regular graph are surveyed. Several known bounds are reviewed as special cases of modest extensions. Comparisons are made with the Shannon capacity Θ, Lovász’ parameter θ, Schrijver’s parameter θ, and the ultimate independence ratio for categorical products. The survey concludes with some observations on graphs th...

متن کامل

On-Line Choice Number of Complete Multipartite Graphs: an Algorithmic Approach

This paper studies the on-line choice number of complete multipartite graphs with independence number m. We give a unified strategy for every prescribed m. Our main result leads to several interesting consequences comparable to known results. (1) If k1− m ∑ p=2 ( p2 2 − 3p 2 + 1 ) kp > 0, where kp denotes the number of parts of cardinality p, then G is on-line chromatic-choosable. (2) If |V (G)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2009